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We construct deformed annihilation and creation operators of the harmonic 
oscillator context in terms of the parity operator and realize in that way the 
superalgebra sqm(2) of supersymmetric quantum mechanics. Moreover, this 
specific example is related to the physical application known as the Calogero 
problem. The reducibility of supersymmetric quantum mechanics is then 
established for arbitrary odd superpotentials, but not for even ones. We also get 
(minimal) dynamical algebras in both cases, shedding new light on such physical 
quantities as the Runge--Lenz vector. 

1, I N T R O D U C T I O N  

Since the early days of (classical as well as quantum) physics---let us 
say mechanics----one of  the most interesting tools certainly is the study of  
the harmonic oscillator (Shankar, 1980; Capri, 1985). Its one-dimensional 
(spatial) version is already sufficient for considering extensions to realistic 
three- or d-dimensional applications. It has also been considered as a 
starting system for illustrating remarkable developments in quantum groups 
and algebras (Drinfeld, 1986; Jimbo, 1985; Macfarlane, 1989; Bieden- 
ham, 1989). 

Moreover, very recently, Palev and Stoilova (1994) have (re)visited the 
so-called three-dimensional Wigner oscillators (Wigner, 1950) by classifying 
their (purely bosonic) characteristics into three categories referring to three 
specific Z2-graded structures, i.e., the simple Lie superalgebras (Kac, 1977; 
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Cornwell, 1989), respectively denoted by osp(ll6), sl(l13), and osp(312). 
We immediately mention that, in the one-dimensional context, these 
superalgebras osp(ll6) and osp(312) both reduce to osp(ll2) and lead to 
the (already well-known study of) parabosonic oscillator (Ohnuki and 
Kamefuchi, 1982) of order p, while the superalgebra sl(113) simply becomes 
sl(lll). This last structure reveals an unexpected property: sl(lll) is 
isomorphic to the Witten superalgebra (Witten, 1981) currently denoted 
by sqm(2), which characterizes supersymmetric quantum mechanics (SSQM) 
when the two supercharges are identified with the annihilation and cre- 
ation operators. 

Let us also point out from another set of well-known properties that the 
above-mentioned parabosonic oscillator and its operators can be seen as 
(purely) generalized deformed bosonic ones: this directly comes out when 
the Chatuverdi and Srinivasan (1991) approach is related to deformations 
through the arguments developed very recently by Bonatsos and Daskaloy- 
annis (1993). 

It is thus natural to ask for the parallel possibility with regard to the 
third superalgebra sl(lll) [or sqm(2) characterizing SSQM]. 

In fact, we want to show in this paper that we are able to construct 
annihilation and creation operators from generalized deformation require- 
ments (Chaturvedi and Srinivasan, 1991) expressed in terms of the parity 
operator, an important discrete operator distinguishing the even or odd charac- 
ter of superpotentials, for example, in SSQM. 

In that way, for general odd superpotentials (the harmonic oscillator one 
is only a particular example), we will show that SSQM is a reducible 
theory realized in terms of bosonic operators only. Such developments 
will also lead us to a very interesting physical application, known as the 
supersymmetric Calogero problem (d'Hoker et al., 1989; Lahiri et al., 
1990; Cooper et al., 1995; Celka and Hussin, 1987; Jayaraman and de 
Lima Rodrigues, 1994). In fact, this Calogero problem will be related to 
generalized deformed harmonic oscillator developments obtained through 
the introduction of the parity operator in the corresponding supercharges, 
the latter idea having been exploited in a different context by Gendenshtein 
and Krive (1985). 

The contents of this paper are as follows. In Section 2, we realize the 
supersymmetric harmonic oscillator in terms of deformed purely bosonic 
operators appearing, in particular, as functions of the parity operator and 
acting on the Fock state vectors. In Section 3, we relate these developments 
to the physically interesting Calogero problem. In Section 4, we generalize 
the results of Section 2 to arbitrary odd superpotentials, but we also discuss 
the even context. 
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2. ON A GENERALIZED DEFORMED SUPERSYMMETRIC 
HARMONIC OSCILLATOR IN TERMS OF THE PARITY 
OPERATOR 

In the one-dimensional context, the Wigner type II oscillator (Palev and 
Stoilova, 1994) admits the sl(lll)-superalgebra characterized by the structure 
relations (in terms of commutators [.,.] and anticommutators {.,.}) 

A 2 = A .2 = 0 (2.1a) 

[{A*, A}, A] = 0 (2.1b) 

where capital letters refer to specific annihilation (A) and creation (A*) opera- 
tors, distinguished from the usual bosonic ones (a and a*) characterized by 
the well-known relations 

[a, a*] = 1 (2.2) 

1 
HB = ~ {a, a*} 

where HB is the expected bosonic Hamiltonian. If  we define the supersymmet- 
ric Hamiltonian Hss by 

1 
Hss = ~ {A, A t } (2.3) 

we notice that the relations (2.1) and (2.3) generate a structure which is 
isomorphic to the Witten superalgebra sqm (2), where A and A t play the role 
of the supercharges. Let us consider their action on a Fock basis {In)} 
characterized by the occupation number n = 0, 1, 2 . . . .  appearing as eigenval- 
ues of the occupation operator N. Following recent generalized deformation 
requirements (Chaturvedi and Srinivasan, 1991), we thus ask for 

AIn) = F,c/-~[n - 1) 

and (2.4) 

A*ln) = x/F(n + 1)In + 1) 

but with the extra condition 

F(n)F(n - 1) = 0 (2.5) 

in order to ensure the nilpotencies (2. la). Simple considerations lead to two 
possible choices, hereafter denoted F+, given by 

F+(n) = n[1 + (-1)"]  (2.6) 
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where ( -  1)n naturally refer to the eigenvalues __. 1 of the parity operator P, 
the expressions (2.6) corresponding trivially to the operators 

F_+(N) = N(1 _ P) (2.7) 

These two possibilities lead to nonequivalent supersymmetric developments 
due to the (nonequivalent) sets of operators ensuring the superalgebra relations 
(2.1) and (2.3). In terms of the old bosonic operators (a, at), we get the two sets 

1 1 
A+ = ~ a(1 -T- P), a t_ = - ~  at(1 _+ P) (2.8) 

where the signs have to be kept in correspondence. In the first (+)-context, 
it is easy to verify that the relations (2.3) and (2.4) become 

1 1 l 
Hss,(+ ) = ~ {A+, At+} = ~ {a, a t } + ~ P (2.9a) 

1 
A+ln) = ~ [1 - ( - 1 )  n] x/'nln - l)  (2.9b) 

l 
a*+ln) = ~ [1 + ( - 1 )  ~] ~ + lln + l) (2.9c) 

This leads to the information 

Hss,(+)J2n) = (2n + 1)12n) (2.10) 

Hss,(+)12n + 1) = (2n + l)12n + 1) 

so that we get in particular a broken supersymmetric model due to the result 

nss.(+)10) = 10) (2.11) 

which will be discarded in the following. On the contrary, we will keep the 
second (-)-context  because it leads to an exact (unbroken) supersymmetric 
model. We get 

1 1 1 
Hss,(_ ) = ~ {A_,At-} = ~ {a, a t} - ~ P (2.12a) 

1 
A_ln) = ~ [1 + ( - 1 )  ~] x/nln - 1) (2.12b) 

1 
At_In) = ~ [1 - ( - 1 )  n] ~ + lln + 1) (2.12c) 
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leading to the information 

Hss,(-)12n) = 2n12n), Hss,(-)12n + 1) = (2n + 2)12n + 1) 
(2.13) 

and to tho evident particular result on the vacuum state 

Hss,(-)10) = 0 (2.14) 

Both proposals (2.9) and (2.12) are realizations of the Witten superalgebra 
with generalized deformed bosonic generators only (without introducing Pauli 
matrices, for example). 

We now point out the interest of the parity operator in Witten matrix 
form of SSQM characterized by the relations 

Q2 = Q,2 = 0, [Q, Hw(n.o.)] = [Q*, Hwo~.o.)] = 0 (2.15a) 

1 1 1 
nw~n.o.) = ~ {Q, Q,} = ~ {a, a t } + ~ o-3 (2.15b) 

when the supercharges are given in the harmonic oscillator case by 

a = x/~ ato-_, Q, = x/~ ao-+ (2.15c) 

where o-3, o-_+ = o'1 • /o'2 are the usual Pauli matrices. Through the uni- 
tary transformation 

U = ~  - V  1 + P  ] (2.16) 

expressed in terms of the above-mentioned parity operator, we get an equiva- 
lent representation given by 

H~v = ~ {Q', O'*/ = Hss,(-) (2.17a) 

We have thus constructed a completely reducible representation of the 
Witten superalgebra via the parity operator. The physical content is equivalent 
in both representations: only one bosonic state is associated with the energy 
eigenvalue E = 0 and twofold degeneracies (bosonic and fermionic states) 

with the new supercharges 

Q , =  ( -At+ A0,), Q , f =  ( - A +  a O) (2.17b) 
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are associated with nonzero energy eigenvalues. Let us only mention that 
the new fermionic number operator is given by 

NF= U( 1 0 ) U - '  = 1 (  1 +Po 1-pO ) 

leading to fermionic states of the form 

and to bosonic states of the form 

(~ 12n) and 

(2.18) 

(12n O 1)) (2.19a) 

( 1 2 n :  1)) (2.19b) 

3. A CONNECTION WITH THE CALOGERO 
SUPERPOTENTIAL 

In the deformed harmonic oscillator case, fixed by the realizations (2.8) 
of the corresponding operators, let us choose the (-)-context leading to an 
exact supersymmetry according to the relations (2.12)-(2.14). In terms of 
the old bosonic position and momentum operators, denoted x and p as usual, 
we have that the super-Hamiltonian (2.12a) can be written 

1 (p2 1 1 ~ 2  
Hss,<-) = ~ + x2) __ 2 p = 2 + .~2) (3.1) 

where the deformed ~ and/~ "variables" are defined by 

1 1 
$ = ~ (x + ipP), p = ~ (p - ixP) (3.2) 

4z  ,/2 

and satisfy 

{.~, p} = 0 (3.3) 

An interesting basis is immediately obtained by referring to the two 
subspaces of even (~§ and odd (~_) functions distinguished through the 
parity operator. We have 

1 1 
�9 (x) = ~ (1 + P)~(x) + ~ (1 - P)~(x) (3.4a) 

= ~+(x) + V_(x) (3.4b) 
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and 

Hss,(-)~+(x) = nXIt+(x), Hss,(-)~-(x) = (n + 1)~_(x) (3.5) 

so that the matrix formulation (2.17a) takes an interesting form here with 
the two-component states (~+, ~_) - .  We thus have 

(102 q" X2) -- 2 0"3 ~t t -  = (n + 1 )~_]  (3.6) 

We get only even energy eigenvalues (n = 0, 2, 4 . . . .  ) with well-defined 
states: for example, if E = 0, only the state (10), 0)- is admissible; if E = 
2, only the two states (0, I1))- and (12), 0)- are eigenstates, etc. The reducibil- 
ity of SSQM evidently appears in this context. If the parity eigenvalue is 
(+ 1), the energy spectrum and the eigenfunctions are 

En = 2n, n = O, 1, 2 . . . . .  ~n(X)  = e-X2/2Lnl/2(x 2) (3.7) 

while if the parity eigenvalue is ( -  1), the energy spectrum and the eigenfunc- 
tions are 

En = 2n + 2, n = O, 1, 2 . . . . .  ~ n ( x )  = xe-X2/ZL~/2(x 2) (3.8) 

where L~ u2 (x 2) are the generalized Laguerre polynomials (Magnus et  aL, 
1966) very simply related to the well-known Hermite ones, such results being 
readily obtained from general information in SSQM. 

These properties have directed our attention to the physically interesting 
Calogero problem (d'Hoker et  al., 1989; Lahiri et al., 1990; Cooper et al., 
1995; Celka and Hussin, 1987; Jayaraman and de Lima Rodrigues, 1994) 
characterized by the supersymmetric Hamiltonian 

/ ~ s s = ~  + x  2 ) - h  1 - - ~ 0 " 3  1 + (3.9) 

This solvable problem leads, if h ~ 1/2, to the spectra and eigenfunctions 

E n = 2n, n = O, l ,  2 . . . . .  ~n(X)  = x~e-X2~L~-ll2(x 2) (3.10) 

and 

E, = 2n + 2, n = 0, 1, 2 . . . . .  ~ , ( x )  - - - -  xX+le-xZ/2LXn+ll2(x2 ) 

(3.11) 

corresponding to the eigenvalues (+ l) and ( -1 ) ,  respectively, of the Pauli 
matrix ~r 3. The Calogero system and the deformed harmonic oscillator conse- 
quently have remarkable common properties (see also their connection if 
h = 0). 
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Let us end this section by showing that, besides the property of having 
the same spectra, the above two systems also admit the same invariance 
orthosymplectic Lie superalgebra osp(212) [already pointed out in the Calo- 
gero context by Balantekin (1985). This sheds light on a physical problem 
in terms of deformed characteristics (Drinfeld, 1986; Jimbo, 1985; Bonatsos 
and Daskaloyannis, 1993) relevant to quantum algebras. Indeed, using the 
same notations as in Balantekin (1985), let us mention here the ad hoc 
realization of the four even generators of osp(212) for the Calogero problem 
on the forms 

l(p 2 h2 X ) 
r0=  +x2+   o-3 

K+ = 2 _ x  2 +  1 + 2 / X P + x :  o'3 

K- = 2 _ x 2 _ 1 - 2/xp + x2 0"3 

1 k 
B = - -o-3  - 

4 

as well as that of the other four odd generators 

V+ = + / x + i  o-_, 

(3.12a) 

and 

Such a realization corresponds to an atypical representation (Debergh, 1993) 
which is characterized through the Casimir operator of osp(212) by 

1 h 
a ' = ~ + ~  if o-3= +1 (3.13a) 

3 h 
" r = ~ + ~  if o-3= - 1  (3.13b) 

The parallel developments are relevant for the deformed harmonic oscillator, 
so that we get now corresponding to the super-Hamiltonian (3.1) 

1 1 (p2 B' = - ~  P, K6 = ~ + x 2) (3.14a) 

1 ( p 2 _ x  2 +  1 +2/xp), K_ l ( p 2 _ x  2 _  1 - 2 i x p )  K+ 
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and 

1 
v~_ = ~ q, + ix)(1 + P), 

1 
V _ = ~ ( p - / x ) ( 1  + P )  (3.14b) 

1 
W~_ = ~ (p + /x)(1 - P), 

1 
W_ = ~ ( p - i x ) ( 1 - P )  

This is once again an atypical representation characterized by -r = 1/4 and 
"r = 3/4 according to the (+ 1) and ( - 1 )  eigenvalues of the parity operator. 

We see that the two super-Hamiltonians (3.1) and (3.9) have the same 
spectra and that the two systems admit the same invariance superalgebra, the 
unique difference lying in the fact that the representations of this invariance 
superalgebra are different (they evidently become identical when k = 0, i.e., 
when the Calogero problem reduces to the harmonic oscillator case). 

4. EXTENSION TO ARBITRARY SUPERPOTENTIALS 

Let us generalize the supercharges (2.15c) as usual to the following 
forms given in terms of the superpotential W(x): 

Q = (17 + iW(x))cr_, Qt = (t9 - iW(x))cr+ (4.1) 

and let us distinguish the parities of W(x). 

4.1. The Superpotential Is an Odd Function of x 

The meaningful representation is immediately obtained through the uni- 
tary transformation (2.16). Adding a subscript (0) referring to this odd context, 
we get 

= U Q U - ' =  1(-(17 + iW(x))(Io + P) Q(~ 

Q~o) = UQ, U_ 1 = l ( - ( p  - iW(x))(1-  P) 
o Z.,\ 

0 ) (4.2a) 
(p + iW(x))(1 - P) 

0 ) (4.2b) 
(p - iW(x))(1 + P) 

and the super-Hamiltonian becomes a diagonal operator 

Hss(~ = 0 p2 + W2(x) _ W'P 

1 ~2 + W2(x)) + 1 = w ' P , , 3  (4.2c) 
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where W' refers to the first derivative of W. The results (4.2) once again 
show the complete reducibility of SSQM in the present context. 

4.2. The Superpotent ial  Is an Even Funct ion  of  x 

Characterizing this even context by subscript (%), we easily get 

1 ( -p(1 + P) 
Q(~) = UQU-1 = ~VW(x)(1 + P) 

= 1 (  -p(1 + P )  
a~) = u a * u - I  2\iW(x)(1 - P) 

leading to the nondiagonal super-Hamiltonian 

-iW(x)(1 - P)I (4.3a) 
p(1 - P) ] 

-iW(x)(1 + P)I (4.3b) 
p(1 + P) ] 

�89 w' ) 
Hsst~) = W' p2 + W2(x) 

1 
= 12 (p2 + W2(x)) + 2 W'trl (4.3c) 

In contrast to the odd context, we see that the even case does not lead to a 
reducible representation. Note in addition that the Hamiltonian (4.3c) can be 
identified with the original Witten one 

1 (pZ 1 
Hw = ~ + I4/2) + ~ W'tr3 

via the other unitary transformation 

,(: 1 / 
U w = 7 2  1 

but leading to nondiagonal supercharges of the type 

1 ( - ( p  - iW(x))P - ( p  - iW(x)) ,  ] 
Qw = O~vQa)O~v = ~ ~ _(p + iW(x)) - ( p  + iW(x))P] 

(4.4) 

(4.5) 

In this even context of SSQM, the superalgebra sqm(2) is not reducible. 
In fact, we discover that sqm(2) does not characterize the applications with 
these even superpotentials, but has to be replaced by sqm(3) generated by 
the super-Hamiltonian (4.4) and three supercharges given, for example, by 

(4.6) 
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(. 0 )  1 0 p W(x) 
Q1 = ~ + iW(x) 

Q2 = 7~ i(p + iW(x)) 

1 (-i(p-iW(x))P 0 ) 
Q3 = ~ 0 -i(p + iW(x))P 

These three supercharges generate sqm(3) characterized by the structure 
relations 

{Ql, Q2} = {Q1, Q3} = {Q2, Q3} = 0 

1 (p2 1 
a Z = 0 5 = a 3  z = ~  + W Z ( x ) ) + ~ W ' o ' 3 = H w - ( 3 . 4 )  (4.8) 

[Qk, Hw] = 0, k = 1, 2, 3 

It also has to be noticed that these three supercharges satisfy the commu- 
tation relations 

[aj, Ok] = 2ir (4.9) 

where 

L'=(-OP ~)' L z = (  O P)'  L 3 = (  1 g l ) ( 4 . 1 0 )  

The relations (4.9) are then completed by 

[Lj, Lk] = 2i~jtaLl (4.11 a) 

and 

while 

[Lj, Qk] = 2i~jktQt (4.11 b) 

[Hw, Ly] = 0, j = 1, 2, 3 (4.12) 

The results (4.8), (4.9), (4.11), and (4.12) finally lead to so(4) as an invariance 
algebra for Hw whatever W is. As an interesting physical example, let us 
mention that the dynamical algebra of the hydrogen atom (the corresponding 
superpotential (d'Hoker et al., 1989) being invariant under the action of the 
parity operator) is recovered here by using supersymmetric developments 
improved by the parity operator. In particular, we can identify the three 
supercharges (4.7) as the three components of the Runge-Lenz vector, a 
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result improving the one of Lyman and Aravind (1993), who took care, in 
a different approach, of two components Ql and Q2 only [leading only with 
/-3 to the so(3)-algebra]. Thus, our third supercharge Q3 achieves the total 
connection between supersymmetric quantum mechanics and the nonrelativis- 
tic hydrogen atom, due to the parity operator. 

In conclusion, we have thus shown that, by taking account of the parity 
operator, the odd and even families of superpotentials lead to different Lie 
superalgebras [sqm(2) and sqm(3), respectively] resulting in corresponding 
different--minimal--dynamical algebras [exemplified by the so(3)-algebra 
in the special case of the odd harmonic oscillator context or by the so(4)- 
algebra in the special case of the even hydrogen atom one]. 

ACKNOWLEDGMENT 

N.D. is Chercheur, Institut Interuniversitaire des Sciences Nucl~aires, 
Brussels. 

REFERENCES 

Balantekin, A. B. (1985). Annals of Physics, 164, 277. 
Biedenharn, L. C. (1989). Journal of Physics A, 22, L873. 
Bonatsos, D., and Daskaloyannis, C. (1993). Physics Letters B, 307, 100. 
Capri, A. Z. (1985). Nonrelativistic Quantum Mechanics, Benjamin/Cummings, Menlo Park, 

California. 
Celka, P., and Hussin, V. (1987). Modern Physics Letters A, 2, 391. 
Chaturvedi, S., and Srinivasan, S. (1991). Physical Review A, 44, 8024. 
Cooper, E, Khare, A., and Sukhatme, U. (1995). Physics Reports, 251, 267. 
Cornwell, J. E (1989). Group Theory in Physics, Vol. IH, Academic Press, London. 
Debergh, N. (1993). Journal of Mathematical Physics, 34, 1270. 
D'Hoker, E., Kostelecky, V. A., and Vinet, L. (1989). Spectrum generating superalgebras in 

dynamical groups, in Spectrum Generating Algebras, A. Barut, A. Bohm, and Y. Ne'eman, 
eds., World Scientific, Singapore. 

Drinfeld, V. G. (1986). Quantum groups, in Proceedings International Congress of Mathemati- 
cians, Berkeley, California, Academic Press, New York. 

Gendenshtein, L. E., and Krive, I. V. (1985). Soviet Physics Uspekhi, 28, 695. 
Jayaraman, J., and de Lima Rodrigues, R. (1994). Modern Physics Letters A, 9, 1047. 
Jimbo, M. (1985). Letters in Mathematical Physics, 10, 63. 
Kac, V. (1977). Advances in Mathematics, 26, 8. 
Lahiri, A., Roy, P. K., and Bagchi, B. (1990). International Journal of Modern Physics, 5, 1383. 
Lyman, J. M., and Aravind, P. K., (1993). Journal of Physics A, 26, 3307. 
Macfarlane, A. J. (1989). Journal of Physics A, 22, 4581. 
Magnus, W., Oberhettinger, E, and Soni, R. P. (1966). Formulas and Theorems for the Special 

Functions of Mathematical Physics, Springer-Vedag, Berlin. 



Reducibility of Supersymmetric Quantum Mechanics 2003 

Ohnuki, Y., and Kamefuchi, S. (1982). Quantum Field Theory and Parastatistics, University 
of Tokyo Press, Tokyo. 

Paler, T. D., and Stoilova, N. I. 0994). Journal of Physics A, 27, 977. 
Shankar, R. 0980). Principles of Quantum Mechanics, Plenum Press, New York. 
Wigner, E. P. (1950). Physical Review, 77, 711. 
Witten, E. (1981). Nuclear Physics 8, 188, 513. 


